Nine months ago, I showcased my then-largest Leyland prime find. Things have changed a bit. Here are, as of today, the top ten known Leyland primes:
386434 (328574,15) Sergey Batalov May 2014
300694 (110610,523) Hans Havermann Jun 2021
300468 (63722,51915) Hans Havermann Jun 2021
300337 (314738,9) Anatoly Selevich Feb 2011
300035 (67594,27465) Hans Havermann Jun 2021
300000 (70599,17756) Hans Havermann Jun 2021
265999 (255426,11) Sergey Batalov May 2014
223463 (234178,9) Anatoly Selevich Jul 2011
172940 (104608,45) Norbert Schneider Jun 2021
149984 (45728,1905) Hans Havermann Oct 2020
The first column gives the number of decimal digits. The Leyland number of an (x,y) pair is x^y + y^x. Half of the entries have been found in the last seven days!
No comments:
Post a Comment