7^85*918679^8 <120> k=13
The number's 120-digit decimal expansion joined with the 10 digits of its normally-expressed factorization contains altogether exactly 13 each of the digits zero through nine. I suggested that it hadn't been too difficult to obtain — essentially, brute-force searching the product of a prime to a power and another prime to a power. In spite of this number's relatively easy generation, I hadn't found a larger example until recently:
8466772177^34 <338> k=35
That is, the 338-digit integer joined with the 12 digits of its factorization contains exactly 35 each of the ten decimal digits!
No comments:
Post a Comment