The sum of the first 4006 prime counts of A383675 is 4998755. The sum of the first 4007 prime counts is 5001521. Hence, the five-millionth term of A157711 is a 4007-digit integer:
4998756 10^4006+10^39+10^18+1
4998757 10^4006+10^104+10^53+1
4998758 10^4006+10^108+10^16+1
4998759 10^4006+10^177+10^120+1
4998760 10^4006+10^192+10^59+1
...
4999995 10^4006+10^2671+10^2184+1
4999996 10^4006+10^2672+10^696+1
4999997 10^4006+10^2672+10^1708+1
4999998 10^4006+10^2673+10^392+1
4999999 10^4006+10^2673+10^530+1
5000000 10^4006+10^2673+10^876+1
5000001 10^4006+10^2673+10^1124+1
5000002 10^4006+10^2675+10^1928+1
5000003 10^4006+10^2676+10^1232+1
5000004 10^4006+10^2677+10^1160+1
5000005 10^4006+10^2677+10^2092+1
...
5001517 10^4006+10^4003+10^3570+1
5001518 10^4006+10^4003+10^3818+1
5001519 10^4006+10^4003+10^3854+1
5001520 10^4006+10^4004+10^609+1
5001521 10^4006+10^4005+10^1892+1
A157711(1*10^6) = 10^1793+10^673+10^615+1 [2025 June 19]
A157711(2*10^6) = 10^2535+10^1160+10^398+1 [2025 July 21]
A157711(3*10^6) = 10^3103+10^2747+10^859+1 [2025 September 10]
A157711(4*10^6) = 10^3583+10^3040+10^2776+1 [2025 December 7]
A157711(5*10^6) = 10^4006+10^2673+10^876+1 (above)
A157711(6*10^6) ~ 10^4387

No comments:
Post a Comment