Tuesday, December 23, 2025
Saturday, December 20, 2025
Wednesday, December 17, 2025
Monday, December 15, 2025
Saturday, December 13, 2025
Thursday, December 11, 2025
Tuesday, December 09, 2025
Sunday, December 07, 2025
The four-millionth term of A157711
The sum of the first 3583 prime counts of A383675 is 3998725. The sum of the first 3584 prime counts is 4000485. Hence, the four-millionth term of A157711 is a 3584-digit integer:
3998726 10^3583+10^118+10^44+1
3998727 10^3583+10^147+10^131+1
3998728 10^3583+10^208+10^96+1
3998729 10^3583+10^210+10^88+1
3998730 10^3583+10^211+10^61+1
...
3999995 10^3583+10^3034+10^1492+1
3999996 10^3583+10^3034+10^1624+1
3999997 10^3583+10^3035+10^1153+1
3999998 10^3583+10^3036+10^628+1
3999999 10^3583+10^3039+10^217+1
4000000 10^3583+10^3040+10^2776+1
4000001 10^3583+10^3041+10^127+1
4000002 10^3583+10^3041+10^1207+1
4000003 10^3583+10^3041+10^1561+1
4000004 10^3583+10^3044+10^1690+1
4000005 10^3583+10^3044+10^1816+1
...
4000481 10^3583+10^3579+10^1911+1
4000482 10^3583+10^3580+10^1356+1
4000483 10^3583+10^3581+10^457+1
4000484 10^3583+10^3581+10^1299+1
4000485 10^3583+10^3581+10^3547+1
A157711(1*10^6) = 10^1793+10^673+10^615+1 [June 19]
A157711(2*10^6) = 10^2535+10^1160+10^398+1 [July 21]
A157711(3*10^6) = 10^3103+10^2747+10^859+1 [September 10]
A157711(4*10^6) = 10^3583+10^3040+10^2776+1 (above)
A157711(5*10^6) ~ 10^4008 [this will take me well into 2026]
Saturday, December 06, 2025
Thursday, December 04, 2025
Tuesday, December 02, 2025
Subscribe to:
Comments (Atom)
