The recent OEIS A373117 addition had me wondering how many of the 3265920 pandigitals were "stable" (or "balanced" in Éric Angelini's article). I found 135914 such:
2 1023487695
3 1023495876
4 1023497658
5 1023569748
6 1023578496
7 1023579468
8 1023584976
9 1023587649
10 1023596478
11 1023649857
12 1023685497
13 1023746895
14 1023748596
15 1023749568
16 1023764958
17 1023765849
18 1023845796
19 1023847659
20 1023865479
4 1023497658
5 1023569748
6 1023578496
7 1023579468
8 1023584976
9 1023587649
10 1023596478
11 1023649857
12 1023685497
13 1023746895
14 1023748596
15 1023749568
16 1023764958
17 1023765849
18 1023845796
19 1023847659
20 1023865479
21 1024368975
...
...
135894 9876253014
135895 9876305421
135896 9876314250
135897 9876321540
135898 9876324051
135899 9876325104
135900 9876340251
135901 9876350214
135902 9876351024
135903 9876403512
135904 9876405132
135905 9876405213
135906 9876412503
135907 9876431052
135908 9876432105
135909 9876502413
135910 9876503142
135911 9876510432
135912 9876513024
135913 9876520314
135914 9876521043
135895 9876305421
135896 9876314250
135897 9876321540
135898 9876324051
135899 9876325104
135900 9876340251
135901 9876350214
135902 9876351024
135903 9876403512
135904 9876405132
135905 9876405213
135906 9876412503
135907 9876431052
135908 9876432105
135909 9876502413
135910 9876503142
135911 9876510432
135912 9876513024
135913 9876520314
135914 9876521043
The entire list is here. The vertical blades in the above are the seventh digit in the first 21 terms and the fourth digit in the final 21 terms. There are eighteen different ways in which ten-digit integers might be stable. Here are the possible digit-multipliers, in pandigitals the frequency of their occurrence, and the [smallest index, largest index]:
(0, 1, 2, 3, 4, 5, 6, 7, 8, 9)
(-1, 1, 2, 3, 4, 5, 6, 7, 8, 9)
(-1, 0, 1, 2, 3, 4, 5, 6, 7, 8)
(-2, -1, 1, 2, 3, 4, 5, 6, 7, 8)
(-2, -1, 0, 1, 2, 3, 4, 5, 6, 7)
(-3, -2, -1, 1, 2, 3, 4, 5, 6, 7)
(-3, -2, -1, 0, 1, 2, 3, 4, 5, 6) => 2010 [60132, 135914]
(-4, -3, -2, -1, 1, 2, 3, 4, 5, 6) => 14892 [11501, 135847]
(-4, -3, -2, -1, 0, 1, 2, 3, 4, 5) => 37712 [ 4507, 135595]
(-5, -4, -3, -2, -1, 1, 2, 3, 4, 5) => 36873 [ 1194, 134669]
(-5, -4, -3, -2, -1, 0, 1, 2, 3, 4) => 31768 [ 345, 128927]
(-6, -5, -4, -3, -2, -1, 1, 2, 3, 4) => 11393 [ 45, 110619]
(-6, -5, -4, -3, -2, -1, 0, 1, 2, 3) => 1266 [ 1, 60133]
(-7, -6, -5, -4, -3, -2, -1, 1, 2, 3)
(-7, -6, -5, -4, -3, -2, -1, 0, 1, 2)
(-8, -7, -6, -5, -4, -3, -2, -1, 1, 2)
(-8, -7, -6, -5, -4, -3, -2, -1, 0, 1)
(-9, -8, -7, -6, -5, -4, -3, -2, -1, 1)
No comments:
Post a Comment