## Thursday, November 18, 2021

### Pandigital palindromic sums

Two days ago Éric Angelini posted on MathFun:

234567898765432 + 1000000000000000 = 1234567898765432

... noting that (ignoring the arithmetic symbols) the concatenated 47 digits are a palindrome. Éric wondered about smaller palindromic sums where all ten digits are present ("pandigital" in the sense of A171102). Here are the 24 smallest:

12076 + 38354945 = 38367021
12076 + 83854945 = 83867021
12376 + 80854945 = 80867321
12876 + 30354945 = 30367821
13086 + 27254945 = 27268031
13086 + 72754945 = 72768031
13286 + 70754945 = 70768231
13786 + 20254945 = 20268731
21067 + 38354945 = 38376012
21067 + 83854945 = 83876012
21367 + 80854945 = 80876312
21867 + 30354945 = 30376812
23087 + 16154945 = 16178032
23087 + 61654945 = 61678032
23187 + 60654945 = 60678132
23687 + 10154945 = 10178632
31068 + 27254945 = 27286013
31068 + 72754945 = 72786013
31268 + 70754945 = 70786213
31768 + 20254945 = 20286713
32078 + 16154945 = 16187023
32078 + 61654945 = 61687023
32178 + 60654945 = 60687123
32678 + 10154945 = 10187623