Thursday, December 04, 2025

The four-millionth term of A157711

The sum of the first 3583 prime counts of A383675 is 3998725. The sum of the first 3584 prime counts is 4000485. Hence, the four-millionth term of A157711 is a 3584-digit integer:

3998726 10^3583+10^118+10^44+1
3998727 10^3583+10^147+10^131+1
3998728 10^3583+10^208+10^96+1
3998729 10^3583+10^210+10^88+1
3998730 10^3583+10^211+10^61+1
...
3999995 
3999996 
3999997 
3999998 
3999999 
4000000   to be determined (Dec 5 or 6)
4000001 
4000002 
4000003 
4000004 
4000005 
...
4000481 
4000482 
4000483 
4000484 
4000485 10^3583+10^3581+10^3547+1

A157711(1*10^6) = 10^1793+10^673+10^615+1 [June 19]
A157711(2*10^6) = 10^2535+10^1160+10^398+1 [July 21]
A157711(3*10^6) = 10^3103+10^2747+10^859+1 [September 10]
A157711(4*10^6) =   to be determined (above)
A157711(5*10^6) ~ 10^4008 [this will take me well into 2026]

I'll continue to update (here, until the next millionth is reached) my current plot of A383675:
A383675 to n=3595; max=(3593,2895) [updated December 3]  click to enlarge